Asymptotical mean-square stability of linear θ-methods for stochastic pantograph differential equations: variable stepsize and transformation approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean Square Convergence of Stochastic Θ-methods for Nonlinear Neutral Stochastic Differential Delay Equations

This paper is devoted to the convergence analysis of stochastic θ-methods for nonlinear neutral stochastic differential delay equations (NSDDEs) in Itô sense. The basic idea is to reformulate the original problem eliminating the dependence on the differentiation of the solution in the past values, which leads to a stochastic differential algebraic system. Drift-implicit stochastic θ-methods are...

متن کامل

Stepsize Control for Mean-Square Numerical Methods for Stochastic Differential Equations with Small Noise

Abstract. A strategy for controlling the stepsize in the numerical integration of stochastic differential equations (SDEs) is presented. It is based on estimating the p-th mean of local errors. The strategy leads to stepsize sequences that are identical for all computed paths. For the family of Euler schemes for SDEs with small noise we derive computable estimates for the dominating term of the...

متن کامل

Convergence and Stability of the Semi-implicit Euler Method with Variable Stepsize for a Linear Stochastic Pantograph Differential Equation

The importance of stochastic differential delay equations (SDDEs) derives from the fact that many of the phenomena witnessed around us do not have an immediate effect from the moment of their occurrence. A patient, for example, shows symptoms of an illness days (or even weeks) after the day in which he or she was infected. In general, we can find many ”systems”, in almost any area of science (m...

متن کامل

On exponential mean-square stability of two-step Maruyama methods for stochastic delay differential equations

We are concerned with the exponential mean-square stability of two-step Maruyama methods for stochastic differential equations with time delay. We propose a family of schemes and prove that it can maintain the exponential mean-square stability of the linear stochastic delay differential equation for every step size of integral fraction of the delay in the equation. Numerical results for linear ...

متن کامل

A Variable Stepsize Implementation for Stochastic Differential Equations

Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge–Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Mathematics

سال: 2021

ISSN: 0020-7160,1029-0265

DOI: 10.1080/00207160.2021.1932841